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Exercise 413 

Determination of liquid’s viscosity coefficient using Stoke’s method 

 

The solid spheres method 

Liquid: GLYCERINE 
Radius of the cylinder 

R = .......................... m Distance  𝑠1 =............................ 𝑚  𝑠2 =............................ 𝑚 

Liquid’s density,         𝜌𝑓 [kg/m3]         

Mass of  n = .............. 

spheres,                    m 
[kg] 

 
Time,  [s] 

      

Average mass of  

1 sphere,                     𝑚𝑠 
[kg] 

        

Volume of n spheres,     V [m3] 
 

Average 

time 
𝑡1 =........................... 𝑠 𝑡2 =........................... 𝑠 

Volume of 1 sphere 

                                𝑉𝑠 =
𝑉

𝑛
 

[m3] 
 

Velocity 

[m/s] 
𝑢1 =......................... 𝑢2 =......................... 

Average radius of 

1 sphere,                          r 
[m] 

 Viscosity 

coefficient 

[Pas] 
𝜂1 =...............................  𝜂2 =............................... 

 
 

 Average viscosity coefficient, 

[Pas] 𝜂 =.............................. 

 

 

Theoretical value 

of viscosity coefficient …………….…. [Pas] for the temperature of ……….. C 
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Exercise 413. Determination of liquid’s viscosity coefficient using Stoke’s method 

Introduction 

Imagine immersing a sphere in a liquid and starting to pull it at a constant velocity. Let's consider 

what the resistance of the liquid to the moving sphere depends on, that is, when you have to pull 

harder and when you have to pull weaker to maintain the given 

velocity. If we switch to a larger sphere, the resistance increases. 

Therefore, the drag force depends on the radius of the sphere. If we 

increase the velocity of the ball, the resistance also increases. The 

drag force also depends on the type of liquid, specifically on its 

viscosity. The more viscous the liquid, the greater the drag force. 

To be precise, the drag force, acting on a rigid sphere moving in an unconstrained viscous fluid in 

a slow uniform motion, is defined by Stokes' law. It states that the drag force 𝐹𝑠 is directly proportional 

to the velocity 𝑣 of the ball, its radius 𝑟 and the viscosity coefficient of the fluid 𝜂, and that the 

proportionality coefficient (in the case of a sphere) is equal to 6: 

F r us  6   (1) 

Stokes' law can be used to determine the viscosity coefficient. If a ball of radius 𝑟, and velocity 𝑣 

encounters resistance 𝐹𝑠, then from equation (1) the value of 𝜂 can be calculated. 

Let us now consider the descent of a sphere in a liquid. A falling sphere in a liquid is 

subject to three forces: gravity 𝑄 = 𝑚𝑔, viscous drag 𝐹𝑠 and buoyancy 𝐹𝑤. Initially, 

the force of gravity is greater than the sum of the other forces and the sphere falls in 

an accelerated motion with increasing velocity 𝑢. But as the velocity increases, 

according to Stokes' law, the viscous drag increases more and more and at a certain 

point the force of gravity becomes equal to the sum of 𝐹𝑠 + 𝐹𝑤. From this point 

onwards, the further descent of the sphere continues in a uniform motion. Now let us 

describe the equilibrium condition for the forces causing the uniform motion of the 

sphere: 

𝑚𝑠𝑔 = 𝐹𝑠 + 𝐹𝑤 .    (2) 

According to Archimedes' law, the buoyancy force is equal to the weight of the liquid displaced by 

the body immersed in it. If the volume of the sphere is 𝑉𝑠, and the density of the liquid is 𝜌𝑓, then the 

buoyancy force is equal to 

𝐹𝑤 = 𝑉𝑠𝜌𝑓𝑔 (3) 

We substitute 𝐹𝑠 with equation (1) and 𝐹𝑤 with equation (3) in the force equilibrium condition (2), 

𝑚𝑘𝑔 = 6𝜋𝑟𝑢𝜂 + 𝑉𝑠𝜌𝑓𝑔, 

and after transformation we obtain the formula for the viscosity coefficient: 

𝜂 =
(𝑚𝑠−𝑉𝑠𝜌𝑓)𝑔

6𝜋𝑟𝑢
. (4) 

Equation (4) is only valid for expanding liquids, i.e. those contained in very wide vessels. If a sphere 

falls in a cylindrical tube of radius 𝑅, the effect of the vessel's surface reduces the fall velocity and 

a correction factor, depending on the ratio 
𝑟

𝑅
, must be introduced into equation (4). The corrected 

formula for determining the viscosity coefficient is as follows: 

𝜂 =
(𝑚𝑠−𝑉𝑠𝜌𝑓)𝑔

6𝜋𝑟𝑢(1+2,4
𝑟

𝑅
)
. (5) 

Q = m
 
g

k

Fw
Fs

Fs
F
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Performance of the task 

The exercise involves determining the viscosity coefficient of glycerine. In the 

experiment we will use a glass cylinder filled with the liquid being investigated. 

We will use glass spheres to test our glycerine. 

We determine the following quantities: 

 the radius of the cylinder 𝑹, by measuring its internal diameter with a ruler, 

 the density of liquids 𝝆𝒇, by using an hydrometer appropriate for the liquid (the density of oil is 

less than that of water 𝜌𝑤, and the density of glycerine is greater than 𝜌𝑤), 

 the volume of a glass sphere 𝑽𝒔, measured by the change in water level after dropping a 

minimum of 10 glass spheres into a measuring cylinder (10 ml capacity) filled with water to 

approximately 
2

3
 of its height, 

 the weight of 𝒏 spheres 𝒎, by weighing a minimum of 10 glass spheres, 

 the radius of a sphere 𝒓, by using the formula for the volume of a sphere 𝑟 = √
3𝑉𝑠

4𝜋

3
, 

 the velocity 𝒖, we mark two different distances 𝑠1and 𝑠2 on the cylinder and measure the falling 

times of the spheres with a stopwatch. The spheres are dropped through a funnel. Measure several 

times for each distance. Calculate the average falling time 𝑡1 (for distance 𝑠1) and 𝑡2 (for 

distance 𝑠2). 

 u s t ii i i , ,1 2 . 

 

Calculation of the uncertainties 

We calculate the relative errors in the determination of the viscosity coefficient using the method of 

the exact differential which we apply to equation (5). We assume that the quantities subject to 

measurement error are: u, 𝑚𝑠, 𝑉𝑠, 𝜌𝑠, r, while we ignore the error in measuring the radius 𝑅 of the 

cylinder due to its negligible effect on the final value of the Δ𝜂. 

After calculating the partial derivatives and performing the appropriate transformations, we get: 

𝚫𝜼

𝜼
=

𝚫𝒖

𝒖
+

𝚫𝒎𝒔 + 𝝆𝒇 ∙ ∆𝑽𝒔 + 𝑽𝒔 ∙ ∆𝝆𝒇

𝒎𝒔 − 𝝆𝒇𝑽𝒔
+

𝟏 + 𝟒, 𝟖(
𝒓
𝑹

)

𝟏 + 𝟐, 𝟒(
𝒓
𝑹)

∙
∆𝒓

𝒓
 

Measurement errors of physical quantities are calculated (for measurement 𝑖 = 1 or 𝑖 = 2) as 

follows: 

 
𝛥𝑢𝑖

𝑢𝑖
=

𝛥𝑠𝑖

𝑠𝑖
+

𝛥𝑡𝑖

𝑡𝑖
, where 𝛥𝑠𝑖  accuracy of the distance measurement, 𝛥𝑡𝑖 = √

∑ (𝑡𝑖−𝑡𝑖𝑠)2𝑛
𝑘=1

𝑛(𝑛−1)
 

(standard error of the mean time of descent of the sphere for 𝑛 measurements taken for one of 

the two distances),  

 ms - weighing accuracy divided by the number of spheres weighed,  

 Vs is defined as twice the accuracy of the volume of liquid in the measuring cylinder divided 

by the number of spheres, 

 Δ𝜌𝑠 is equal to the smallest graduation on the scale of the hydrometer (1 kg/m3), 

 
Δ𝑟

𝑟
=

Δ𝑉𝑠

3𝑉𝑠
 - the logarithmic derivative method was applied to the formula 𝑟 = √

3𝑉𝑠

4𝜋

3
. 

s
1

s
2

 


