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Exercise 407 Study of vibrational motion of the elastic pendulum 

I. Determination of the spring constant 

Block Location of the indicator Elongation Coefficient 

mass 

im ,   [kg] 

 weight  

i
Q ,   [N] 

without load 

l i0 ,   [m] 

with load 

il ,   [m] 

0 0i i ix l l  , 

[m] 

0i i ik Q x , 

[N/m] 

      

      

      

The average value of the spring constant,      k k k k  1 2 3 3   

II. Checking the isochronism law of the pendulum 

Amplitude 

Ai    [m] 
Time of n  .................. vibrations,    it ,   [s] 

Period of 

vibration 

T t n ,  [s] 

     

     

     

III. Determination of the mass of the block 

Time of n  ............. vibrations, 

                                        it  
[s] 

   

Period of a vibration 

                               

i iT t n  

[s] 

   

The average period of 

vibrations,                      T 
[s] 

 

 

Mass of the spring,         sm  [kg]  
The mass of the indicator, 

                                      wm  

[kg]  

Calculated mass of the block, 

                                       xm  
[kg]  

Measured mass of the block [kg]  

Absolute error [kg]  Relative error [%]  
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 Exercise 407. Study of vibrational motion of the elastic pendulum 

Introduction 

Simple harmonic motion 

One type of motion that is often found in physics is an oscillating motion in which the body moves 

back and forth along the same path. For example, a pendulum in a clock, a weight suspended on a 

spring, or atoms in a crystal lattice move with vibrating movements. A special example of an 

oscillating motion is simple harmonic motion. 

Simple harmonic motion occurs when the force acting on a vibrating body is proportional to the 

body's deflection from the equilibrium position and directed towards it. The equation of motion 

of a point with mass m subjected to such a force is as follows: 

ma k x  , (1) 

where a is the acceleration of mass m, x –its inclination from the equilibrium position, k –

coefficient of proportionality. If we take into account that the acceleration a can be expressed as the 

second derivative of the x coordinate at time t, the equation (1) is as follows: 

a
d x

dt

k

m
x  

2

2
, (2) 

whose solution is a function: 

x A t cos( )  . (3) 

Therefore, we can say that a simple harmonic motion is a motion in which the coordinate 

describing the motion of the body changes periodically in a sinusoidal manner. The quantities 

occurring in the above function characterize the harmonic motion: 

 –the initial phase of movement; it is the angle that determines the x-coordinate value of the 

moment t  0 . 

A –vibration amplitude is the maximum deflection of the vibrating body from the equilibrium 

position, 

 –the circular frequency of vibrations satisfying the relationship 

   2 2T f , (4) 

where T means a period, and f – a frequency of  vibration 

The period of vibration is the time during which one complete vibration is made. During the period, 

the body goes through each point of its path twice (except for the extreme points) and returns to its 

initial state. The frequency of vibrations is the number of vibrations per unit of time. The period and 

frequency are related: 

f T 1. 

We get the speed and acceleration in harmonic motion by calculating the derivatives: 

v
dx

dt
A t a

d x

dt
A t           sin( ) cos( ),       =

2

2

2
. 

The last expression, after substituting (3), can be written: 

a x  2 . (5) 

Equation (5) shows the relationship between the coordinate of the body position, its acceleration, 

and the circular frequency of vibrations in harmonic motion. 

Equating equations (2) and (5), we obtain the relationship 

  k m , (6) 
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which shows that the circular frequency is equal to the square root of the quotient of the coefficient 

k and the body mass m. 

The harmonic motion of a body suspended on a spring 

Our experiment aims to observe the harmonic movement of a 

weight suspended on a spring, the so-called elastic pendulum, 

fig. 1. A block suspended on a spring at rest is in a position 

which is called the equilibrium position. If the block is pulled 

down below the equilibrium position and released, it will 

begin to vibrate up and down. 

Two opposing forces act on the block (weight) resting in the 

equilibrium position and balance each other. They are the 

force of gravity Q mg  operating vertically downward and 

the restoring force 0F


 of the stretched spring directed in the direction opposite to the deformation. 

According to Hook's law, at small deformations, the elastic force is proportional to the 

deformation: x0 : 

   F k x0 0  .       (7) 

The constant k here means spring constant. The coordinate of deformation x0  is obtained from the 

condition of the equilibrium of forces: 
0 0Q F  , from which it follows that mg kx 0 . If we 

measure x0 for a known mass m suspended on a spring, we can determine its spring constant k: 

k
mg

x


0

. (8) 

When the block (weight) is tilted x up or down from the equilibrium position, an unbalanced spring 

force F appears, proportional to x (Hook's law): 

F k x  . (9) 

As we already know, this type of force is responsible for the harmonic motion of the body - so we 

can use the compounds (4) and (6), from which we obtain the formula for the period of vibrations: 

T
m

k
 2 . (10) 

We can see that the period of vibrations depends only on the mass of the weight m and the constant 

k of the spring, and not on the initial deviation of the weight from the equilibrium position. The fact 

that the vibration period does not depend on the amplitude A is referred to as the isochronism law of 

the spring pendulum. Checking the law of isochronism will be one of the goals of the experiment. 

When deriving the formula for the period, the air resistance force was neglected, which causes 

a decrease in the amplitude of vibrations and influences the period of vibrations. Due to the small 

amplitude of the vibration velocity, we will still not take it into account in the calculations. 

The second simplification is the omission of the mass of the spring ms . From energetic 

considerations of vibrating motion, a formula can be derived that takes into account the fact that the 

spring has its own mass. The "corrected" formula for the pendulum oscillation period is: 

T m m ks 








2

1

3
 . (11) 

If we determine the period of vibrations of an unknown mass suspended on a spring with a known  

k value, we can use formula (11) to determine the mass of the weight m. 
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Performance of the task 

Determination of the spring constant 

1. Hang the spring on a tripod and attach a light plastic indicator to its end. On the linear scale, 

connected to the tripod, read the position of the horizontal line marked on the indicator. 

2. Attach a block of known mass to the indicator and read the position of the indicator line again. 

Calculate the elongation of the spring. 

3. Calculate the weight of the suspended block and the spring constant k - formula (8). 

4. Perform the measurements for three blocks with different masses and calculate the average 

value of k. 

Checking the law of isochronism of the pendulum. 

1.  Load the spring with a weight, pull it down, e.g. by 1 cm, and measure the time of several dozen 

(n) full vibrations of the pendulum. For the same vibration amplitude, we repeat the 

measurements three times. Calculate the average time of vibration n and then the period of the 

oscillating motion. 

2.  Repeat the period measurements at two other, suitably increased vibration amplitudes. 

Attention: The spring load must be selected appropriately for checking the isochronism law. If the 

mass m is too small, the vibrations are too fast and we are not able to count them, and if the mass is 

too high - the vibrations are not harmonic (the elongation does not comply with Hook's law). 

Determination of the mass of the block 

Similarly, as above, we determine the period of vibration of a spring loaded with an unknown mass 

mx. By transforming (11) we get: 

m k
T

ms 
2

24

1

3
. 

The mass m is the sum of the mass of the block mx and the mass of the indicator. The mass mx is 

calculated from the formula: 

m m m k
T

m mx w s w    
2

24

1

3
. (12) 

 

 

Calculation of the uncertainties 

The measurement error of the k coefficient is calculated as the maximum error of the average of 

three measurements: 

max ,   1, 2, 3.ik k k i     

The estimation of the mass measurement error mx is performed using the total differential method: 

    m
T

k k
T

T m mx s w   
2

2 24

2

4

1

3 
. 

w
mms   — spring and indicator weighing accuracy 

max it t
T

n


  ; (i = 1, 2, 3) —error in determining the period 

 


