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Exercise 362 

Determination of the focal length of lenses by the Bessel method and 

measurement of radii of curvature of the lens using a spherometer 

I. Determining the focal length of a converging and diverging lens 
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and a lens 
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 Focal length of the diverging lens, [m] 2f  

II. Measurement of radii of curvature of the lens and determination of the refractive index 

length of the sides of the 
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Exercise 362. Determination of the focal length of lenses by the Bessel 

method and measurement of radii of curvature of the lens using  

a spherometer 

Lenses 

Let us first consider a doubly convex lens, bounded by two spherical surfaces with radii of curvature 

1R   and 2R . For example, suppose that several rays of light approach the lens and that the rays move 

parallel to the principal axis (Fig.1). On reaching the lens's front surface, each light ray refracts in 

the direction normal to the surface. The light ray passes from the air into a denser medium at this 

boundary. Then, as the light ray passes from a medium in which it is moving fast (less optically 

dense) to a medium in which it is moving relatively slower (more optically dense), it will refract 

towards the normal line. As a ray of light refracts across the boundary and enters the lens, it travels 

in a straight line up to the back surface of the lens. At this boundary, each ray of light refracts from 

normal to the surface. Then, as a ray of light passes from a medium in which it is moving slowly 

(more optically dense) to a medium in which it is moving fast (less optically dense), it deflects from 

the normal line. 

 

The figure above (Fig. 1a) shows the behaviour of rays incident on a lens parallel to the principal 

axis. Note that the two rays converge at a single point; this point is called the focal point of the lens. 

The figure (Figure 1b) shows the behaviour of incident rays parallel to the principal axis of a double 

concave lens. As with the biconvex lens, light deflects towards the normal as it enters the lens and 

away from the normal as it exits the lens. However, due to the different shape of the biconvex lens, 

the incident rays do not converge to a point when refracted through the lens. Instead, when refracted 

through the lens, the incident rays diverge. For this reason, a double-concave lens can never produce 

a true image. Doubly concave lenses produce virtual images. If the refracted rays are extended 

backwards behind the lens, we make an important observation. The extension of the refracted rays 

will intersect at a certain point. This point is called the focal point. Diverging lens, such as this 

double concave lens, does not focus the incident light rays that are parallel to the principal axis but 

diverges them. For this reason, a diverging lens is said to have a negative focal length. 
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Lens Equations 

The focal length of a lens depends on the refractive index n of the material from which it is made 

and its radii of curvature 1R  and 2R . In the case of thin lenses, which are the subject of our 

discussion, someone can calculate the focal length from the lens formula: 

 
1

1
1 1

1 2f
n

R R
  









      (1) 

which is often called the lens maker’s equation. The radius of curvature of the convex surface is 

positive, in turn the radius of the concave surface is negative. Since the focal length of the scattering 

lens is negative, the sum of the reciprocal of the radii of curvature for this type of lens must also be 

negative. The reciprocal of the focal length fD 1 is called the optical power (also referred to as 

dioptric power, refractive power, focusing power, or convergence). The unit of the optical power is 

the diopter, [D]; 1D = 1m-1. 

We shall consider only the particular case of a thin lens, a lens in which the thickest part is thin 

relative to the object distance a, the image distance b, and the radii of curvature R1 and R2 of the two 

surfaces of the lens. We can prove that for rays which make small angles with the central axis, a thin 

lens has a focal length of f. Moreover, a and b are related to each other by: 

1 1 1

a b f
        (2) 

 

The focal length of an optical system composed of two thin lenses with focal lengths 1f and 2f , put 

together, satisfies the dependence 

1 1 1

1 2f f fu

   (3) 

 

Determination of the focal length of the lens by the Bessel method 

Converging lens 

In this method (see Fig.3), we set a constant distance between the object and the screen l, and then 

we find two positions of the lens, when the enlarged (position 1) and reduced (position 2) image 

which is created on the screen. In both cases, we measure the distance between the lens and the 

object x1 and x2 and calculate the difference in the positions of the lens d. The object distance in lens 

position one x1 is equal to the image distance in lens position two y2 (x1=y2), and the object distance 

in lens position two x2 is equal to the image distance in position on y1 ( x2=y1).   
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The lens formula for the enlarged and reduced image is as follows: 

 

 

, 

 

 

 

 

Finally, we get the formula for the focal length:  

         (5) 

Diverging lens 

Since diverging lenses do not produce real images, we combine a diverging lens with a focal length 

f2 with a converging lens with a known focal length f1 into a lens system that should have the 

properties of a converging lens – it is possible when 
2 1f f .  Then, in the same way as for a single 

converging lens, we determine the focal length uf of the system. 

By transforming the dependence (3), we obtain the formula 

1
2

1

u

u

f f
f

f f





 (6) 

from which, after substituting the focal lengths 1f  and uf  determined by the Bessel method, we 

calculate the focal length of the diverging lens 2f  . 

 

 

 

 

Fig.3 
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Determination of the radius of curvature of the lens using a spherometer 

The height h of a spherical lens can be measured using a spherometer. The essential measuring 

element of the spherometer is a movable vertical micrometre screw or dial micrometre sensor. The 

measuring element is mounted on tripod support. 

The conically pointed feet of the spherometer form the vertices of an equilateral triangle, through 

the centre of which passes the axis of the screw (right side of Fig.4). 

Considering the OP3T triangle shown in Fig. 4 (left side), whose right angle is based on the 

diameter, we obtain a relationship between the radius R of the sphere (in our case, the radius of 

curvature of the lens), r - the radius of the circle forming the base of the spherometer; and h – height 

(look at fig.4) : 

                                                                    2 2r R h h         (7) 

The circle forming the base of the spherometer is a circle inscribed in an equilateral triangle with 

side c formed by the base of the spherometer. So there is a relationship: 

3

c
r  , 

Hence, we get the formula for the radius of curvature:  

2

6 2

c h
R

h
  . (8) 

So by measuring c and h, we can find the radius of curvature. The height of h is the difference 

between the indication of the spherometer set on a flat surface and the indication read when the 

spherometer is set on the one of the surfaces of the lens under test. 

We assume h> 0 for a convex surface and h <0 for a concave surface. 

The refractive index of the lens material 

After determining the lens's focal length and the radii of curvature of its surface, we can calculate 

the refractive index of the lens material, so we get : 

                                                                  
 

n
R R

f R R



1 2

1 2

1                                             (9) 
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Performance of the task 

 

Determination of the focal length of the converging and diverging lens using the Bessel 

method 

1. Read the distance l  of the object from the screen on the optical bench. 

2. We are looking for a position 1b  of the lens corresponding with a sharp magnified image on the 

screen and then a position 2b corresponding to the sharp reduced image. 

3. Repeat no2. three times and calculate the mean values - their difference gives the distance d: 

21 bbd   

4. Calculate the focal length f1  of the lens based on the Bessel formula (5). 

5. Connect a scattering lens with an unknown focal length f2  with a converging lens with an 

already determined focal length f1 . We determine, using the above method, te focal length f2  of 

the system. 

6. Connect the diverging lens of an unknown focal length of f2 with a converging lens with a 

calculated focal length of f1. Then, let's determine the system's focal length of fu using the above 

method. 

7. Calculate the focal length f2  using the formula (6). 

Determination of the radius of curvature of the lenses 

1. Imprint the marks of the legs of the spherometer tripod on a sheet of paper. Apply the calliper 

blades to the traces on the paper and read the lengths of the triangle's three sides. Calculate the 

average value of the obtained results as the value of the side of the equilateral triangle  c.   

2. Determine the zero position of the spherometer. To do this, place the spherometer on a smooth 

plate and read its indication (the tip of the spherometer sensor should touch the plate). 

3. Then, put the spherometer on the convex surface of the converging lens and read its indication of 

h1 . Calculate the difference  h h h 1 0 .  

4. We carry out the same measurements on the other surface of the lens – h2, which can also be 

convex or concave. In the latter case, the value h = h2 - h0  is negative. 

5. Put the values of h and c into formula (8) and then calculate the radii of curvature R1 and R2 of 

the converging lens. 

6. Put the focal length value determined by the Bessel method into the formula (9) to calculate the 

refractive index. 

7. Repeat the same steps to the diverging lens. 
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Calculation of the uncertainties 

 

The maximum absolute errors of the measured quantities are calculated using differential calculus. 

We make calculations for the converging lens. 

Measurement error of focal length 

2 2 2 2

1 1
1 1 2

,
4 4 2

f fl d l d d
f f l d l d

l l d l l

 

 

 
          . 

Because  l d =2 mm,  formula for 1f  can lead to a simpler form: 

 
2

1 24

l d
f l

l


   . (10) 

Measurement error of radius of curvature  

2

,
6 2

c h R R
R R c h

h c h

 

 
       . 

After calculating the partial derivatives: 

2

2
0,5

3 6

c c
R c h

h h
       . (11) 

The value h equals twice the accuracy of a spherometer (2*0,01 mm=0,02 mm). 

max 0,1mmic c c    ,  i = 1, 2, 3; (0,1 mm is the accuracy of the caliper) 

Measurement error of refractive index  

 
1 2

1 2 1

1 2 11 1 2

,
R R n n n

n n R R f
R R ff R R

  

  
       


. 

The calculations of partial derivatives lead to the formula: 

 

2 2

2 1 1 2 1 2 1

2 2

1 2 1
1 1 2

R R R R R R f
n

R R ff R R

    
   

 
. (12) 

 f1 ,  R R1 2, ,  from the calculations above (formulas 10 and 11). 

 


