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Exercise 240 

Determination of specific conductivity of electrolytes 

 

I. Determination of conductivity cell constant 
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I [mA]            
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[C] 
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kt  
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II. Determination of specific conductivity of electrolyte 

Resistance 

DR ,  [] 
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the solution 

Temperature  

of the solution 

[C] 

Specific conductivity  

[S/m] 

2R   [] pt
 kt  2t  

at temp. 2t  at 18C 

2  02  
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Exercise 240. Determination of specific conductivity of electrolytes   

 

Introduction  

Electrolyte is defined as a solution that contains ions in addition to neutral molecules. The ions' 

source are molecules of acids, bases and salts that dissociate in a solvent with high dielectric 

constant ( eg, water). If we create an electric field between electrodes immersed in an electrolyte, an 

electric current will flow through the electrolyte. The carriers of this current are both cations 

(positive ions) and anions (negative ions). The intensity of this current, I, is directly proportional to 

the electric field strength, E, and the cross-sectional area, S, of the current carriers' flux, 

I E S   . (1) 

The proportionality factor   is called the specific conductivity of the electrolyte. The dimension of 

 is siemens per meter, [S/m]; 1 Sm-1 = 1 -1m-1 (siemens is the inverse of Ohm). Specific 

conductivity is the inverse of specific resistance , 

 1 . 

Due to the simultaneous transfer of mass and charge, the conductivity of electrolytes is much lower 

than the electron conductivity in metals. The specific conductivity depends on the type of solute, its 

concentration, temperature and the type of solvent. The dependence of  on temperature is linear: 

     0 18t ; (2) 

  and  0  denote the specific conductivity of the electrolyte at temperature t and C180 t , 

respectively, 

 - the temperature coefficient of specific conductivity (it expresses the increase in BB 

corresponding to a unit change of temperature). 

The strength of the electric field, E, between the electrodes can be expressed as the ratio of the 

voltage on the electrodes, U, to their mutual distance l: 

E U l . 

We put this relationship into equation (1):  

I
SU

l



, (3) 

and considering that I U R , where R is the electrical resistance of the conductor, we get: 

R
l

S
 
1


. (4) 

The l S  ratio for a given set of electrode in an electrolytic vessel is constant and is called the 

conductivity cell constant C:  

S

l
C   (5) 

The measure of C is the reciprocal meter, [m-1]. Applying (5) to (4), we get  

R

C
 . (6) 

By measuring the resistance R of the electrolyte in a vessel of known conductivity cell constant C, 

we can use formula (6) to determine the specific conductivity. To calculate the conductivity cell 

constant, we use an electrolyte of known specific conductivity. 
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Measurement of electrolyte resistance. 

We can determine the electrolyte resistance R using a Wheatstone bridge. The Wheatstone bridge 

circuit is made up of 4 resistors connected according to the diagram shown in Fig. 1. The electrolyte 

is located in the NE vessel. Resistances  aR  and bR  are known, whereas DR  is adjustable (decade 

resistor) and is used to balance the bridge. 

 

 

Measurement of resistance R requires the selection of such a 

resistance DR , so that the current flowing through the 

galvanometer G has a minimum value. Then the potentials at 

points O and S are approximately equal and the bridge is in 

balance. 

The Kirchhoff's laws imply the equality of potentials V VS0   

at points O and S if: 

            R R R RD a b .       (7) 

Resistances aR  and bR  shall be chosen so that ba RR  . Then, equation (7) implies R RD , which 

means that under balanced bridge conditions the resistance R of the electrolyte is equal to the 

resistance of the decade resistor. 

Determining the resistance R1  of the electrolyte with known specific conductivity  1  at 

temperature 1t  allows to calculate the conductivity cell constant C from equation (6), 

1 1C R  . (8) 

Aray data of the specific conductivity of an electrolyte are usually given for a defined temperature, 

such as 18C – we will denote it as  01 . If we use equation (2), then we obtain C from relation: 

  C R t  1 01 1 1 18  , (9) 

where  1is the temperature coefficient for the standard solution. 

After determining C, we pour an identical amount of solution of unknown specific conductivity  2  

into the same vessel and measure its resistance, R2  . We will calculate the value of  2 from the 

formula 

2

2

C

R
  . (10) 

By measuring R2  values at several different temperatures, we can also determine the temperature 

coefficient of the electrolyte's specific conductivity  —  2 (in this exercise, the value of  2  is given 

and will not be determined). This will allow us to determine the value of the specific conductivity 

 02  at a room temperature of 18C: 

 

   02 2 2 2 18  t , (11) 

where t2  is the temperature at which  2  was measured. 
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Performance of the task 

I. Determining the conductivity cell constant C. 

 

1. Pour the standard electrolyte, 5% NaCl solution, into the electrolytic vessel in such an amount 

that the electrodes are approximately half immersed in the solution. Connect the circuit 

according to the diagram in Figure 1. Supply the circuit with an alternating voltage of several 

volts. 

2. Measure the initial temperature of the electrolyte — t p .  

3. Set a value of 10  on the decade resistor and turn the power supply on. 

4. Look for such a value of resistance DR  on the decade resistor, at which the current in the SO 

branch is the smallest. Write the value of this resistance in the table, including the corresponding 

current value from milliammeter (the minimum value of the current is from a dozen to a few tens 

of mA). 

5. Change the value of the resistance on the decade resistor by 1 , 

in the range of   a few Ohms, starting from the resistance at 

which the current is minimum, and note the corresponding values 

of the milliammeter. 

6. After switching off the power supply, measure the final 

temperaturę tk  of the electrolyte and calculate the average value  

 t t tp k1 2  . 

7. On the basis of the results obtained, make a graph  I f R  and 

determine graphically the resistance R1 , at which the bridge is 

balanced, see Figure 2. 

8. Using equation (9), calculate the conductivity cell constant C. 

 

II. Determination of the specific conductivity of an electrolyte  02 . 

 

1. Determine the resistance R2  of the investigated electrolyte (eg, an aqueous solution of CuSO4, 

15%), following the steps 17 of Part I. 

2. Using equations (10) and (11) calculate  2  and  02    specific conductivity of the tested 

electrolyte at temperaturę 1t  and 18C, respectively. 

 

Array data   5% NaCl:  𝛾1 = 0.15 𝑆/(𝑚 ∙ ℃), 𝜎01 = 6.7 𝑆/𝑚; 

   15% CuSO4:  𝛾2 = 0.10 𝑆/(𝑚 ∙ ℃). 
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Calculation of the uncertainties 

We calculate the absolute errors C and  02  using the method of the complete differential, which 

we apply to equations (9) and (11). For simplicity, we will assume that the array values are not 

subject to measurement error. 

I.   C
C

R
R R t 

1

1 1 1 1 ;   II. 
02 2 2 22

2 2

C C
R t

R R
 


      . 

 

For the calculation, we assume: ∆𝑅1 =  ∆𝑅2 = 0.5 Ω, Δ𝑡1 =  Δ𝑡2 = 0.5 ℃. 

After determining C and  02we also determine the relative percentage errors: 

   B C C Bp p1 2 02 02100%, 100%      . 

 

 


