Nazv	visko
Imię	

Data

Nr na liście	
Wydział	
Dzień tyg.	
Godzina	

Ćwiczenie 369

Wyznaczanie długości fali świetlnej za pomocą spektrometru z siatką dyfrakcyjną.

	Długość fali światła monochromatycznego	[nm]	
--	---	------	--

I. Wyznaczanie stałej siatki d

Kąt	Stała siatki		
na prawo α_1	na lewo α_2	$\frac{\alpha_2 - \alpha_1}{2}$	<i>d</i> , [nm]

II. Wyznaczanie długości fali świetlnej

Kąt ugięcia, [rad}						
Barwa linii	na prawo	na lewo	$\alpha_2 - \alpha_1$	Długość fali,	$\Delta \lambda_{tab} = \left \lambda - \lambda_{tab} \right $	$\frac{\Delta\lambda_{tab}}{2}$.100%
widmowych $\alpha_1 \alpha_2$ 2		λ , [nm]		λ_{tab}		

Długości fal promieniowania wysyłanego przez rtęć pobudzoną do świecenia:

kolor	żółty 1	żółty 2	zielony	niebiesko – zielony	niebieski	fiolet 1	fiolet 2
λ, [nm]	579,0	577,0	546,1	491,6	435,8	407,8	404,7

Wyznaczanie długości fali świetlnej za pomocą spektrometru z siatką dyfrakcyjną.

CEL

Celem ćwiczenie jest analiza promieniowania wysyłanego przez rtęć pobudzoną do świecenia i wyznaczenie długości fal świetlnych o różnych barwach za pomocą spektrometru z siatką

TEORIA

Światło widzialne iest to promieniowanie elektromagnetyczne (zaburzenie pola elektromagnetycznego rozchodzące się w przestrzeni), na które reaguje oko ludzkie. Zakres długości fal tego promieniowania wynosi (w próżni) od $3.8 \cdot 10^{-7}$ m (początek fioletu, częstotliwość ok. 8·10¹⁴ Hz) do 7,7·10⁻⁷ m (koniec czerwieni, czestotliwość ok. 4·10¹⁴ Hz). W ogólności do światła zalicza się również promieniowanie podczerwone i nadfioletowe. Przypomnijmy, że długość *fali* λ równa jest odległości pomiedzy punktami przestrzeni, w których fala jest w tej samej fazie (w przypadku fal elektromagnetycznych oznacza to, że wektory natężenia pola elektrycznego \vec{E} (badź magnetycznego \vec{H}) w punktach oddalonych o długość fali mają ten sam kierunek, wartość i zwrot, czyli sa identyczne). Czas T, jaki potrzebuje fala na przebycie drogi równej długości fali, nazywany jest okresem fali:

$$\lambda = c \cdot T = c/f ,$$

gdzie c — prędkość światła (w próżni 300 000 km/s), f — częstotliwość fali (wielkość określona liczbą długości fal mieszczących się na drodze przebytej przez falę w jednostce czasu).

Postrzeganie zjawisk świetlnych związane jest ze zmianą pola elektrycznego. Zmiana wartości natężenia pola elektrycznego E w czasie, w punkcie odległym o r od źródła światła, dla fali o częstotliwości f może być przedstawiona równaniem:

$$E = E_0 \sin\left[2\pi f\left(t - \frac{r}{c}\right) + \delta\right],$$

gdzie E_0 jest amplitudą, a δ — fazą początkową fali.

Światło ma naturę dualną, falowo-korpuskularną. Przyjmuje się, że światło to swego rodzaju strumienie osobliwych cząstek (korpuskuł), zwanych fotonami, które wykazują własności falowe. Na falową naturę światła wskazują takie zjawiska, jak *dyfrakcja i interferencja promieni świetlnych*.

Zjawisko dyfrakcji i interferencji światła możemy zaobserwować wykorzystując siatkę dyfrakcyjną. Najprostszą siatkę dyfrakcyjną stanowi przezroczysta płytka szklana z gęsto ponacinanymi, równoodległymi rysami. Rysy odgrywają rolę przesłon, a przestrzenie między rysami to szczeliny. Odległość między szczelinami nazywana jest *stałą siatki dyfrakcyjnej d*. Siatka dyfrakcyjna jest używana do analizy widmowej i pomiarów długości fali światła.

Światło przechodzące przez siatkę dyfrakcyjną ugina się na szczelinach, bowiem zgodnie z zasadą Huygensa, każda szczelina staje się źródłem nowej fali i wysyła promienie we wszystkich kierunkach. Zjawisko uginania się fali na otworach bądź krawędziach przesłon (o wymiarach porównywalnych z długością fali) nazywamy *dyfrakcją, czyli uginaniem prostoliniowego biegu promieni*. Ugięte wiązki (ewentualnie zebrane za pomocą soczewki) padające w to samo miejsce ekranu ulegają interferencji. *Interferencją fal* nazywamy nakładanie się fal o tej samej częstotliwości, powodujące wzmocnienie lub osłabienie natężenia fali wypadkowej. W tych miejscach ekranu, w których ugięte promienie spotykają się w zgodnych fazach, następuje ich wzmocnienie i powstają jasne prążki interferencyjne.

Z warunku zgodności faz wynika, że interferujące promienie będą się wzmacniać, jeżeli różnica dróg dwóch sąsiednich promieni, $a-b=d\sin\alpha_n$, będzie równa

całkowitej wielokrotności długości fali padającego światła (rys. 1):

$$d\sin\alpha_n = n\lambda$$
,

gdzie
$$d$$
 – odległość między szczelinami (*stała siatki*), α_n – kąt ugięcia, n – liczba całkowita (rząd prążka), λ – długość fali światła.
Równanie (1) wskazuje, że prążki odpowiadające różnym

długościom fal będą powstawać w różnych miejscach ekranu. Mierząc kąt ugięcia α_n dla prążka rzędu *n*, możemy wyznaczyć długość fali, jeśli znamy stałą siatki.

Promienie spotykające się w tym samym miejscu ekranu w fazach przeciwnych ulegną wzajemnemu wygaszeniu i na ekranie otrzymamy ciemny prążek. Warunkiem uzyskania minimum dyfrakcyjnego jest, aby różnica dróg sąsiednich promieni była równa nieparzystej wielokrotności połowy długości fali:

$$d\sin\alpha_n=(2n+1)\frac{\lambda}{2}.$$

Wyraźny obraz dyfrakcyjny (ostre prążki jasne i ciemne) otrzymuje się tylko wówczas, gdy stała siatki jest porównywalna z długością fali uginanego światła. W typowych siatkach dyfrakcyjnych liczba rys na 1 mm wynosi od ok. 1200 dla nadfioletu do 300 dla podczerwieni.

Wykonanie zadania

I. Układ pomiarowy

Siatka dyfrakcyjna pozwala na uzyskanie dokładniejszych wyników pomiaru długości fali λ , jeżeli do pomiarów kątów ugięcia zostanie zastosowany spektrometr. Schemat układu pomiarowego przedstawia rysunek.

Światło wysyłane przez źródło Z przechodzi przez szczelinę w ekranie Sz_1 , i pada na soczewkę S_1 . Ponieważ szczelina umieszczona jest w płaszczyźnie ogniskowej soczewki, po przejściu

przez soczewkę S_1 wiązka światła staje się w przybliżeniu równoległa. Wiązka ta dociera do siatki dyfrakcyjnej D, umieszczonej w środku stolika obrotowego spektrometru. Na ekranie E ustawionym za siatką można zobaczyć szereg barwnych prążków z prawej i lewej strony szczeliny. Elementy Z, Sz₁, S₁, D są nieruchomo związane z podstawą. Za siatką dyfrakcyjną na ruchomym ramieniu umieszczona jest soczewka S₂; w płaszczyźnie ogniskowej tej soczewki znajduje się szczelina Sz₂, a bezpośrednio za szczeliną czujnik światła C. Soczewka S₂ skupia światło na szczelinie Sz₂.

II. Wyznaczanie stałej siatki d

Stałą siatki wyznaczamy wykonując pomiar kątów ugięcia dla źródła światła monochromatycznego o znanej długości fali — λ . Może to być wiązka światła laserowego.

Odczytujemy kąty ugięcia linii widmowych dla rzędu pierwszego. Obliczamy sinus kąta ugięcia i na podstawie wzoru (1) liczymy stałą siatki *d*:

$$d = \lambda / \sin \alpha \,. \tag{2}$$

III. Wyznaczanie długości fali świetlnej λ

Za szczeliną ekranu ustawiamy lampę rtęciową. . Notujemy położenia kątowe linii widmowych o różnych barwach w widmie rzędu pierwszego, znajdujemy sinus kąta ugięcia i długość fali:

$$\lambda = d\sin\alpha \,. \tag{3}$$

(1)

Okna programu do ćwiczenia 369

Okno podstawowe "**P67_INTER.SWS**" — zawiera przyciski sterowania.

🐕 Science Worksho	p	_ 🗆 ×
File Edit Experiment	Display Help	
🚥 Untitled.SWS		
Image: Non-State Image: Non-State<	Science Workshop Analog Channels	
Sampling Options		
	Digits Meter Scope FFT Table Graph Click and drag a display icon to a channel or sensor to display data.	

Okno pomocnicze: **"Rotary motion sensor"**.

1 🖲 🧳 Rotary Motion	ı Sensor	
Divisions/Rotation: ©1440	Linear Calibration Rack	n: ▼
C 360 Maximum Rate: 3.2 Rotations/s	Distance: 7.980 Divisions: 1440	cm
Calculations: Rotation Counts (counts) Angular Position (angPos) Angular Velocity (angVel) Angular Acceleration (a) Position (linPos)		*
	Cancel	ОК

🛛 Gra	ւ <mark>ph</mark> D	ispla	y						_ [×
	(% max									Γ.	-
	ntensity									ļ	
										H	9
	ы 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1										
` <mark>`</mark>	nsity 50									t,	-
Kana da kana d	0 Inte									ł	
Σ		0 ' '	0.	20	0.	40 '	0.	60 '	' 'o	.80	
<mark> </mark> :{{	•			•	Actu	ial ang	gular po:	sition (rad)	A	æ
<u>* * * * * * * * * * * * * * * * * * * </u>									- E	9	0

Okno "**Light Intensity vs Actual** angular position" — przedstawia wykres zależności natężenia światła od położenia.

WYKONANIE ĆWICZENIA

POTRZEBNE WYPOSAŻENIE			Układ spektrometru
٠	Interfejs "Science Workshop 500"	•	Lampa rtęciowa
٠	Czujnik ruchu obrotowego	•	Laser
•	Czujnik światła	•	

Uwaga! W TYM ĆWICZENIU UŻYWANE JEST ŹRÓDŁO ŚWIATŁA LASEROWEGO. NIE WOLNO GO KIEROWAĆ W KIERUNKU TWARZY! GROZI USZKODZENIEM WZROKU!

W części pierwszej ćwiczenia mierzone będzie natężenie promieniowania światła laserowego po przejściu przez siatkę dyfrakcyjną., a w części drugiej mierzone będzie natężenie promieniowania lampy rtęciowej po przejściu przez siatkę dyfrakcyjną.. Za pomocą czujnika ruchu obrotowego zmierzone zostaną względne położenia maksimów uzyskanych w wyniku zjawiska interferencji.

Program *Science Workshop* umożliwia przedstawienie wykresów natężenia promieniowania świetlnego w funkcji położenia.

Przygotowanie układu pomiarowego

- 1. Najlepsze wyniki pomiarów można uzyskać wybierając w zestawie szczelin **Sz**₁ nr 2, a w zestawie szczelin **Sz**₂ nr 1. Sprawdź ustawienia szczelin.
- 2. Sprawdź czy soczewka S_1 znajduje się w odległości 10 cm od szczeliny S_2 (ogniskowa soczewki S_1 ma wartość 10 cm).
- 3. Sprawdź czy soczewka S_2 znajduje się w odległości 10 cm od szczeliny Sz_2 (ogniskowa soczewki S_2 ma również wartość 10 cm). Odległość tej soczewki należy tak dobrać aby uzyskać na ekranie ostre prążki.
- 4. Sprawdź czy siatka dyfrakcyjna **D** umieszczona na stoliku spektrometru odwrócona jest szklaną stroną w kierunku źródła światła.
- 5. Podłącz wtyki czujnika ruchu obrotowego do cyfrowych wejść **1** i **2** (digital channels 1 & 2) interfejsu. Włącz żółty wtyk do wejścia **1** i wtyk czarny do wejścia **2**.
- 6. Podłącz czujnik światła do analogowego kanału A interfejsu.

Przygotowanie Komputera

1. Włącz interfejs i komputer. Włącznik interfejsu jest na jego tylnej ściance – interfejs powinien być włączony przed uruchomieniem komputera (sygnalizuje to zielona lampka).

- Uruchom system operacyjny Windows i program "Science Workshop". Otwórz (File ⇒ Open) w katalogu Library\Physics dokument P67_INTER.SWS. Na ekranie zobaczymy (po zamknięciu okna Experiment Notes) okno podstawowe P67_INTER i okno wykresu Light Intensity vs Actual Angular Position, przedstawiające zależność natężenia światła od położenia.
 - Okno podstawowe P67_INTER jest w postaci zwiniętej. Pełną postać można przywrócić jak w przypadku każdego okna w programie *Windows*. Po rozwinięciu tego okna widzimy interfejs z rozświetlonymi wejściami cyfrowymi 1 i 2 i wejściem analogowym A.
 - Jeśli wejścia cyfrowe nie są rozświetlone, chwyć myszą ikonę wtyczki cyfrowej i przeciągnąć ją na kanał 1. Na ekranie wyświetli się lista możliwych czujników znajdź i wybierz czujnik ruchu obrotowego (Rotary Motion Sensor), potwierdź wybór naciskając OK. Podobnie, po nasunięciu ikony wtyczki analogowej na kanał A, z listy wybierz czujnik światła (Light Sensor).
 - ◆ Jeśli okno wykresu nie pojawiło się, chwyć ikonę wykresu (Graph) znajdującą się na dole okna P67_INTER i przeciągnij ją na kanał A ikony interfejsu. Obok osi pionowej i poziomej znajdują się duże przyciski w kształcie ramki są to przyciski menu wejściowego danej osi. Dla osi pionowej należy wybrać Analog A ⇒ Intensity, dla osi poziomej calculations ⇒ Actual Angular Position.
- 3. W oknie podstawowym naciśnij przycisk <u>Sampling Options</u> i ustaw suwakiem częstość pomiaru (Periodic Samples) na 20 Hz (Fast). Naciśnij OK.

W oknie czujnika ruchu powinno być ustawiona rozdzielczość 1440 Divisions/Rotation.

Jeśli wejścia cyfrowe nie są rozświetlone, chwyć myszą ikonę wtyczki cyfrowej i przeciągnąć ją na kanał 1. Na ekranie wyświetli się lista możliwych czujników — znajdź i wybierz czujnik ruchu obrotowego (Rotary Motion Sensor), potwierdź wybór naciskając OK. Podobnie, po nasunięciu ikony wtyczki analogowej na kanał A, z listy wybierz czujnik światła (Light Sensor)

PRZEBIEG I REJESTRACJA POMIARÓW

IV. Wyznaczanie stałej siatki dyfrakcyjnej d

- 1. Włącz źródło światła laserowego.
- 2. Ustaw laser na wysokości szczeliny S_1 . Na ekranie E widać pojedyncze czerwone prążki.
- 3. Ustaw przełącznik wzmocnienia GAIN czujnika światła w pozycji 1.

- 4. Przesuń ramię z czujnikiem światła poza obraz prążków pierwszego rzędu.
- 5. W celu rozpoczęcia pomiarów, naciśnij przycisk REC.

- 6. Przesuwaj powoli i płynnie ramię z czujnikiem światła w kierunku prążka centralnego na ekranie aż do prążka pierwszego rzędu znajdującego się po drugiej stronie ekranu..
- 7. Obserwuj zmianę natężenia światła w funkcji położenia w oknie wykresu i tak dobierz prędkość ruchu ramienia z czujnikiem światła, aby otrzymać w miarę ciągły zbiór punktów pomiarowych.
- 8. Po zakończeniu pomiarów, naciśnij przycisk STOP.

V. Wyznaczanie długości fali świetlnej λ

- 1. Ustaw lampę rtęciową przed szczeliną tak aby na ekranie E widać było ostry obraz kolorowych prążków widma rtęci.
- 2. Aby zmierzyć położenia najbardziej intensywnych linii ustaw przełącznik wzmocnienia GAIN czujnika światła w pozycji 10.
- 3. Przesuń ramię z czujnikiem światła poza obraz prążków pierwszego rzędu
- 4. W celu rozpoczęcia pomiarów, naciśnij przycisk REC.
- 5. Przesuwaj powoli i płynnie ramię z czujnikiem światła w kierunku prążka centralnego na ekranie aż do prążka pierwszego rzędu znajdującego się po drugiej stronie ekranu.
- 6. Obserwuj zmianę natężenia światła w funkcji położenia w oknie wykresu i tak dobierz prędkość ruchu ramienia z czujnikiem światła, aby otrzymać w miarę ciągły zbiór punktów pomiarowych.
- 7. Po zakończeniu pomiarów, naciśnij przycisk STOP.
- 8. Aby zmierzyć położenia mniej intensywnych i najsłabszych linii w widmie ustaw przełącznik wzmocnienia GAIN czujnika światła w pozycji 100.
- 9. Powtórz czynności opisane w punktach 3, 4, 5, 6, 7.

ANALIZA DANYCH

VI. Wyznaczanie stałej siatki dyfrakcyjnej d

Aby wyznaczyć stałą siatki dyfrakcyjnej musimy znać kąt ugięcia czerwonych prążków w widmie światła laserowego Kat ten jest równy połowie różnicy położeń kątowych linii znajdujących się po obydwu stronach prążka centralnego Aby określić położenia kątowe linii widmowych posługujemy się w oknie wykresu kursorem precyzyjnym.

- 1. Naciśnij przycisk kursora precyzyjnego w lewym dolnym rogu wykresu. Przenieś kursor do obszaru wykresu. Kursor zmienia się w krzyż z nitek pajęczych. Współrzędne x i y położenia kursora wyświetlane są obok osi poziomej i pionowej. Przesuń kursor na wykresie na środek maksimum po stronie prawej i odczytaj współrzędną położenia α_1 .
- 2. Następnie przesuń kursor precyzyjny na środek maksimum po stronie lewej i ponownie odczytaj współrzędną położenia α_2 .
- 3. Oblicz kąt ugięcia α : $\alpha = \frac{\alpha_2 \alpha_1}{2}$.
- 4. Odczytaj na obudowie lasera długość fali światła lasera..
- 5. Oblicz stałą siatki korzystając ze wzoru: $d = \frac{\lambda_s}{\sin \alpha}$

VII. Wyznaczanie długości fali świetlnej λ

- Aby wyznaczyć długość fali świetlnej dla danej barwy należy wyznaczyć położenie kątowe prążka o danej barwie. W tym celu posługujemy się kursorem precyzyjnym. Zmierz różnicę położenia kątowego dwóch linii dla tej samej barwy, ½ tej różnicy to jest kąt ugięcia danego prążka. Wykonaj czynności opisane w paragrafie V, punkty 1,2,3.
- 2. Oblicz długość fali świetlnej o danej barwie korzystając ze wzoru: $\lambda = d \sin \alpha$.
- 3. Porównaj obliczoną długość fali dla danej barwy z wartością tablicową podaną w tabeli pod tabelą z wynikami pomiarów. Oblicz błąd bezwzględny $\Delta \lambda_{tab}$,

$$\Delta \lambda_{tab} = \left| \lambda - \lambda_{tab} \right|.$$

oraz błąd względny procentowy:

$$B_p = \frac{\Delta \lambda_{tab}}{\lambda_{tab}} \cdot 100\% \; .$$

4. W oknach wykresu dobierz parametry tak, aby wykresy prezentowały się najkorzystniej, następnie zapisz plik na dyskietce (opcja Save As z menu File) i wydrukuj wykresy na komputerze połączonym z drukarką (opcja Print Active Display" z menu File).